An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.���Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.������Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceXDeep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.Product detailsSeries: Adaptive Computation and Machine Learning seriesHardcover: 800 pages Publisher: The MIT Press (November 18, 2016) ISBN-10: 0262035618 ISBN-13: 978-0262035613
Deep Learning (Adaptive Computation and Machine Learning series)
$22.40
Be the first to review “Deep Learning (Adaptive Computation and Machine Learning series)” Cancel reply
Related products
Ebook New zetlly
The Oxford Handbook of the History of Communism (Oxford Handbooks)
Ebook New zetlly
Russia, NATO and Cooperative Security: Bridging the Gap (Contemporary Security Studies)
Ebook New zetlly
The Oxford Handbook of Financial Regulation (Oxford Handbooks)
Ebook New zetlly
Art Fundamentals Theory and Practice 12th dition by Otto Ocvirk
Ebook New zetlly
Ebook New zetlly
Industrial Process Automation Systems: Design and Implementation ?
Deep Learning (Adaptive Computation and Machine Learning series)
$26.50
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.�Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.� �Elon Musk, cochair of Open AI; cofounder and CEO of Tesla and Space X Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.Deep Learning is written by Ian Goodfellow; Yoshua Bengio; Aaron Courville and published by The MIT Press. ISBNs for Deep Learning are 9780262337373, 0262337371 and the print ISBNs are 9780262035613, 0262035618.
Reviews
There are no reviews yet.
Be the first to review “Deep Learning (Adaptive Computation and Machine Learning series)” Cancel reply
Related products
New Arrivals
New Arrivals



Reviews
There are no reviews yet.