Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the”classical”� approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.Additional ISBNs1482210509, 1315372630, 9781482210507, 9781315372631Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions 1st Edition is written by Irina V. Melnikova and published by Chapman & Hall. ISBNs for Stochastic Cauchy Problems in Infinite Dimensions are 9781315360263, 1315360268 and the print ISBNs are 9781482210507, 1482210509. Additional ISBNs include 1482210509, 1315372630, 9781482210507, 9781315372631.
Be the first to review “Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions” Cancel reply
Related products
$23.00
Best Seller
$29.90
New Book
$30.00
New Book
$18.61
$16.00
$20.00


Reviews
There are no reviews yet.